skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pham, Quan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Controlling the structure and reactivity of the chain-end group is a central objective in modern polymer chemistry. Here, we introduce 3,6-anhydrogalactal as a single-addition monomer that enables efficient and versatile chain-end functionalization of metathesis polymers. Readily synthesized from biomass-derived galactal, 3,6-anhydrogalactal exhibits excellent single-addition reactivity, allowing precise chain-end modifications even when introduced simultaneously with the propagating monomer. Theoretical calculations provide mechanistic insights into the unique reactivities governing its single-addition behavior. Its broad functional group compatibility facilitates diverse applications, including block copolymer synthesis, polymer-polymer coupling, and bioconjugation, demonstrating significant potential for advancing polymer materials and bioconjugation strategies. 
    more » « less
    Free, publicly-accessible full text available May 21, 2026
  2. Abstract Heterologous tRNAs used for noncanonical amino acid (ncAA) mutagenesis in mammalian cells typically show poor activity. We recently introduced a virus‐assisted directed evolution strategy (VADER) that can enrich improved tRNA mutants from naïve libraries in mammalian cells. However, VADER was limited to processing only a few thousand mutants; the inability to screen a larger sequence space precluded the identification of highly active variants with distal synergistic mutations. Here, we report VADER2.0, which can process significantly larger mutant libraries. It also employs a novel library design, which maintains base‐pairing between distant residues in the stem regions, allowing us to pack a higher density of functional mutants within a fixed sequence space. VADER2.0 enabled simultaneous engineering of the entire acceptor stem ofM. mazeipyrrolysyl tRNA (tRNAPyl), leading to a remarkably improved variant, which facilitates more efficient incorporation of a wider range of ncAAs, and enables facile development of viral vectors and stable cell‐lines for ncAA mutagenesis. 
    more » « less