skip to main content


Search for: All records

Creators/Authors contains: "Pham, Quan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Heterologous tRNAs used for noncanonical amino acid (ncAA) mutagenesis in mammalian cells typically show poor activity. We recently introduced a virus‐assisted directed evolution strategy (VADER) that can enrich improved tRNA mutants from naïve libraries in mammalian cells. However, VADER was limited to processing only a few thousand mutants; the inability to screen a larger sequence space precluded the identification of highly active variants with distal synergistic mutations. Here, we report VADER2.0, which can process significantly larger mutant libraries. It also employs a novel library design, which maintains base‐pairing between distant residues in the stem regions, allowing us to pack a higher density of functional mutants within a fixed sequence space. VADER2.0 enabled simultaneous engineering of the entire acceptor stem ofM. mazeipyrrolysyl tRNA (tRNAPyl), leading to a remarkably improved variant, which facilitates more efficient incorporation of a wider range of ncAAs, and enables facile development of viral vectors and stable cell‐lines for ncAA mutagenesis.

     
    more » « less
  2. Abstract

    Heterologous tRNAs used for noncanonical amino acid (ncAA) mutagenesis in mammalian cells typically show poor activity. We recently introduced a virus‐assisted directed evolution strategy (VADER) that can enrich improved tRNA mutants from naïve libraries in mammalian cells. However, VADER was limited to processing only a few thousand mutants; the inability to screen a larger sequence space precluded the identification of highly active variants with distal synergistic mutations. Here, we report VADER2.0, which can process significantly larger mutant libraries. It also employs a novel library design, which maintains base‐pairing between distant residues in the stem regions, allowing us to pack a higher density of functional mutants within a fixed sequence space. VADER2.0 enabled simultaneous engineering of the entire acceptor stem ofM. mazeipyrrolysyl tRNA (tRNAPyl), leading to a remarkably improved variant, which facilitates more efficient incorporation of a wider range of ncAAs, and enables facile development of viral vectors and stable cell‐lines for ncAA mutagenesis.

     
    more » « less
  3. Abstract

    We have developed a novel visible‐light‐catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site‐specifically installed 5‐hydroxytryptophan residue (5HTP) on full‐length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light‐emitting diodes (455/650 nm) for rapid site‐specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen‐dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain‐promoted azide‐alkyne click reaction, enables site‐specific dual‐labeling of a target protein.

     
    more » « less
  4. Abstract

    We have developed a novel visible‐light‐catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site‐specifically installed 5‐hydroxytryptophan residue (5HTP) on full‐length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light‐emitting diodes (455/650 nm) for rapid site‐specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen‐dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain‐promoted azide‐alkyne click reaction, enables site‐specific dual‐labeling of a target protein.

     
    more » « less